Search results for "Soil microbial bioma"
showing 6 items of 6 documents
Wastewaters from citrus processing industry as natural biostimulants for soil microbial community
2020
Abstract Citrus fruit processing wastewaters (CWWs), being rich in organic matter, may be a valuable resource for agricultural irrigation and, possibly, for the improvement of soil organic carbon (TOC). This issue is becoming crucial for soils of arid and semiarid environments increasingly experiencing water scarcity and continuous decline of TOC towards levels insufficient to sustain crop production. However, before using CWWs in agriculture their effects on the soil living component have to be clarified. Therefore, in this study we assessed the impact of CWWs on soil chemical and biochemical properties. Under laboratory conditions, lemon, orange and tangerine wastewaters were separately a…
Impact of Ag and Co engineered nanoparticles on soil microbial community structure in a soil perturbed by Lumbricus rubellus
2014
Knowledge on the impact of engineered nanomaterials (ENMs) on both human and environment health is scarce. Several studies sustain that soil is the environmental compartment designed to be the major recipient of engineered nanoparticles (NPs). With the aim of investigating the impact of commercially relevant NPs on soil functioning, we compared the effect of Ag and Co NPs, as well as cobalt and silver ions, on soil microbial community in the presence of Lumbricus rubellus. Earthworms specimens were placed in a rich‐C soil and fed with horse manure spiked with Ag‐NPs, Co‐NPs, Ag+ and Co2+ for a total amount of 10 mg of single pollutant kg‐1 soil. At the end of acute exposure (4 weeks) to pol…
From wastes to resources: citrus hydrolatesas natural biostimulants of soil microorganisms
The hydrolates result from the industrial extraction process of the essential oils through cold pressing of the citrus peels. Today, they are considered a waste to be disposed of. However, due to the presence of water soluble compounds (sugars, polyphenols, acids), hydrolates could be reused instead of being, due to the high economic burden, a problem in the disposal of the same, charged to the company.The aim of this work was to evaluate the effects of citrus hydrolate when directly applied as irrigation water on soil microbial biomass, activity and structure community. The soil used for the experiment was collected from the topsoil (0-10 cm) of a citrus orchard, air-dried and sieved at 2 …
Soil Quality as Affected by Intensive Versus Conservative Agricultural Managements
2017
Soils, the earth’s skin, are at the intersection of the lithosphere, hydrosphere, atmosphere, and biosphere. The persistence of life on our planet depends on the maintenance of soils as they constitute the biological engines of earth. Human population has increased exponentially in recent decades, along with the demand for food, materials, and energy, which have caused a shift from low-yield and subsistence agriculture to a more productive, high-cost, and intensive agriculture. However, soils are very fragile ecosystems and require centuries for their development, thus within the human timescale they are not renewable resources. Modern and intensive agriculture implies serious concern about…
Comparison of different tillage systems in organic farming : effect of soil structure and organic matter repartition on soil micro-organisms and thei…
2009
Over the last decades, the surface traditionally ploughed has tended to decrease and replaced by shallow working tillage techniques without soil inversion, i.e., no tillage or reduced tillage with tines or discs. These techniques were mostly developed in conventional farming systems but nowadays they are also developed in organic farming systems. Nevertheless, these tillage techniques could generate crop nutrients deficiencies and a deterioration of soil structure, especially during the first years of their application. As the use of synthetic fertilizers is forbidden in organic farming, a decrease of the soil fertility could be very detrimental for crop growth. Indeed, soil micro-organisms…
Reversing agriculture from intensive to sustainable improves soil quality in a semiarid South Italian soil
2010
Intensive agriculture (IA) is widespread in South Italy, although it requires frequent tillage, large amounts of fertilizers and irrigation water. We have assessed the efficacy of reversing IA to sustainable agriculture (SA) in recovering quality of a typical South Italy soil (Lithic Haploxeralf). This reversion, lasting from 2000 to 2007, replaced 75% of nutrients formerly supplied inorganically by farmyard manuring and reduced the tillage frequency. Several chemical and biochemical properties, functionally related to C and N mineralisation–immobilisation processes and to P and S nutrient cycles, were monitored annually from 2005 to 2007 in the spring. Reversing IA to SA decreased soil bul…